61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
"""recreate interview_sessions with varchar status
|
|
|
|
Revision ID: c9bcdd2ddeeb
|
|
Revises: 9d415bf0ff2e
|
|
Create Date: 2025-09-03 18:07:59.433986
|
|
|
|
"""
|
|
|
|
from collections.abc import Sequence
|
|
|
|
import sqlalchemy as sa
|
|
from alembic import op
|
|
|
|
# revision identifiers, used by Alembic.
|
|
revision: str = "c9bcdd2ddeeb"
|
|
down_revision: str | Sequence[str] | None = "9d415bf0ff2e"
|
|
branch_labels: str | Sequence[str] | None = None
|
|
depends_on: str | Sequence[str] | None = None
|
|
|
|
|
|
def upgrade() -> None:
|
|
"""Upgrade schema."""
|
|
# Создаем таблицу interview_sessions заново
|
|
op.execute("DROP TABLE IF EXISTS interview_sessions CASCADE")
|
|
|
|
op.create_table(
|
|
"interview_sessions",
|
|
sa.Column("id", sa.Integer(), nullable=False),
|
|
sa.Column("resume_id", sa.Integer(), nullable=False),
|
|
sa.Column("room_name", sa.String(length=255), nullable=False),
|
|
sa.Column("status", sa.String(50), nullable=True, server_default="created"),
|
|
sa.Column("transcript", sa.Text(), nullable=True),
|
|
sa.Column("ai_feedback", sa.Text(), nullable=True),
|
|
sa.Column("dialogue_history", sa.JSON(), nullable=True),
|
|
sa.Column("ai_agent_pid", sa.Integer(), nullable=True),
|
|
sa.Column(
|
|
"ai_agent_status",
|
|
sa.String(50),
|
|
nullable=False,
|
|
server_default="not_started",
|
|
),
|
|
sa.Column(
|
|
"started_at",
|
|
sa.DateTime(),
|
|
nullable=False,
|
|
server_default=sa.text("CURRENT_TIMESTAMP"),
|
|
),
|
|
sa.Column("completed_at", sa.DateTime(), nullable=True),
|
|
sa.ForeignKeyConstraint(
|
|
["resume_id"],
|
|
["resume.id"],
|
|
),
|
|
sa.PrimaryKeyConstraint("id"),
|
|
sa.UniqueConstraint("room_name"),
|
|
)
|
|
|
|
|
|
def downgrade() -> None:
|
|
"""Downgrade schema."""
|
|
op.drop_table("interview_sessions")
|